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A new approach is suggested for the optimization of stationary and more general moving beam type of 
irradiations. The method reverses the order of conventional treatment planning as it derives the optimum 
incident beam dose distributions from the desired dose distribution in the target volume. It is therefore 
deterministic and largely avoids the trial and error approach often applied in treatment planning of today. 
Based on the approximate spatial invariance of the convergent beam point irradi.ation dose distribution, the 
desired dose distribution in the target volume is analyzed in terms of the optimum density of such point 
irradiations. Since each point irradiation distribution is optimal for the irradiation of a given point and due 
to the linearity of individual energy depositions or absorbed dose contributions, the resultant point irradiation 
density will also generate the best possible irradiation of an extended target volume when the maximum 
absorbed dose at a certain distance from the target should be minimized. The optimum shape of the incident 
beam for each position of the gantry is obtained simply by inverse back projection of the point irradiation 
density on the position of the radiation source for that orientation of the incident beam. 

Current treatment planning procedures generally 
employ a trial and error type of approach in testing 
various beam combinations in order to find the best 
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irradiation technique for a given target volume. In 
this investigation the reverse approach has been 
taken, that is: given the desired dose distribution in 
the target volume, how should the incident beams 
best be shaped in order to generate this distribu- 
tion? The optimal dose delivery for many targets in 
the trunk is of the conformation-convergent beam 
irradiation type using as many incident directions 
as possible, considering the shape of the body and 
the location of eventual organs at risk. These treat- 
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ment techniques will therefore be studied here in 
some detail. 

Conformation and more general moving beam 
treatments can today be performed effectively by at 
least four different irradiation techniques. (I) The 
most effective is perhaps by using a computer con- 
trolled multileaf collimator which, can be pro- 
grammed to follow the projection of the target vol- 
ume during the rotation of the gantry around the 
patient. (2) Alternatively the patient can be moved 
axially while being irradiated by a dynamically con- 
trolled slit field also delivered by a rotary gantry [2]. 
(3) A third alternative is to use a treatment unit 
with individual collimator jaw movements which 
can scan a slit field across a stationary patient at 
the same time as the perpendicular jaws are follow- 
ing the target volume. (4) The fourth approach is 
to have a generally opened collimator and scan a 
narrow pencil beam of high energy photons, elec- 
trons or protons over the target volume to obtain 
the best possible dose distribution in each orienta- 
tion of the gantry. 

Naturally all these procedures may be combined 
in different ways to further optimize the treatment. 
However, today the multileaf collimator approach 
is the predominant technique for conformation 
therapy with the incident beam in its simplest form 
just shaped to conform with the target contour in 
each orientation of the gantry. The optimal setting 
of the multileaf collimator in stationary beam ra- 
diation therapy has been treated in a previous pub- 
lication [3]. 

For a small target volume, a convergent beam 
irradiation from all directions will give the highest 
dose to the target for a given acceptable absorbed 
dose level in the surrounding normal tissues. A fun- 
damental problem in moving beam dose planning 
is therefore to determine the most advantageous ir- 
radiation technique in order to treat a given ex- 
tended target volume. This technique should pref- 
erably generate the optimal dose distribution inside 
the target volume [8], and at the same time give 
minimal dose to surrounding normal tissues. A gen- 
eral and powerful method is developed below to 
derive the optimal dose delivery using dynamic 
beam compensation and multileaf collimation dur- 

ing stationary and moving beam therapy. The 
method is based on a systematic application of the 
well known optimal dose distribution for the irra- 
diation of small convex target volumes by using 
Fourier transform techniques or iterative solutions 
of a Fredholm equation of the first kind. 

Optimal dose delivery for small target volumes 

The three dimensional converging beam irradiation 
of a small target volume may be approached in four 
different steps of increasing comparability with the 
isotropic spherical irradiation. (1) The first “one” 
dimensional step is to use parallel opposed fields 
whereas (2) the second two dimensional step cor- 
responds to a 360” arc treatment in one plane. (3) 
This later case can be improved by giving a number 
of additional plane irradiations at an angle to the 
first one or by conically convergent beams that can 
be easily produced, for example, using a multileaf 
collimator. (4) The fourth step is a true isotropic 
spherical irradiation which may be approached by 
using multicobalt treatment units or intracranial ir- 
radiations with multiple external bremsstrahlung 
beams. A more strict realization of the isotropic 
.iCqe is obtained using a distribution of internal ra- 
diation sources in brachytherapy. To get an idea of 
the obtainable dose distributions, approximate ana- 
lytical expressions for these main configurations 
will first be derived. 

(1) The central axis depth-dose distribution in a 
single photon beam is accurately described by the 
function: 

d(z) cc (em%= - ve_V) Do (1) 

where pP is the practical attenuation coefficient of 
the photon beam, pe is the “attenuation” coefficient 
of the secondary electron and v being a measure 
of the electron contamination of the beam [6]. The 
second exponential thus describes the dose build-up 
and the first exponential the fall off of the absorbed 
dose beyond the build-up region [7,13]. The result- 



ant central axis dose distribution in the case of two 
parallel opposed beams of equal weight on a spher- 
ical phantom with the crossection 2 1’0 (see Fig. 1) 
thus becomes: 

d,(r) = 
e - e#0 + r) - ve -p,(ro+r) 

Do - 
+ e-Pp(rO-r) _ ve-fJe(‘o-“) 

- 
2(e-‘Jo -ve-Vo) 

W 

where the denominator normalizes the dose to Do 
in the center of the phantom. By using hyperbolic 
functions this expression may be reduced to: 

d,(r) = D,-, . coshp,r - 
coshp,r - coshp,v 

1 1 . CW - e(Pe-C(JPo _ 1 
V 

The first term inside the brases describes the gross 
dose distribution disregarding effects of the electron 
build-up, which is taken into account by the last 
term. 

(2) and (3) The two dimensional dose distribution 
in the plane where the beam is rotated one revolu- 
tion may be calculated using the previous result. 
Assuming that the beam is uniform over 2a and 
that the penumbra is negligible (see Fig. 1, for an 
exact solution see Brahme et al. [6]) the absorbed 
dose at a given point r, can be calculated from the 
angular interval 50, under which it is being irradi- 
ated. The resultant dose distribution for the cylin- 
drical irradiation becomes: 

d,(r) = d,(r) i arcsin : 
II 

(4) Similarly, the dose distribution for the spheri- 
cally irradiated target is obtained by using the ratio 
of the spatial angles (L?/27r) in analogy to the pre- 
vious case: 

d,(r) = d,(r) (I - /q). (4) 
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Due to the close analogy in theoretical approach 
and its importance in brachytherapy, it is of interest 
to compare the above dose distribution obtained by 
irradiation with external beams with the corre- 
sponding dose distribution generated by internal 
radiation sources. The dose distribution around an 
internal rotationally symmetric and uniform ra- 
dionuclide distribution of radius Q and effective at- 
tenuation coefficient pLp is in the first approximation 
(neglecting multiple scatter) given b\;r: 

a2 
di(r) = Do - &P-‘)_ 

/I r 

t 
D(r) 

(5) 

r 

2a -.- - 3 
Fig. 1. The coordinate system and typical dose distributions for 
one dimensional, parallel opposed (- ), two dimensional, cyl- 
indrical (----) and three dimensional, spheric (. . . . .) treatments 
of a small target volume. It is seen that a considerable reduction 
of the normal tissue dose can be achieved by non-coplanar ir- 
radiations. In the cylindrical case, the incident slit beam has a 
width of 2a (right half of figure) and for the spherical irradiation 
the incident beam is circular with radius a (left). The dose dis- 
tribution with a spherical distribution of radionuclei (-.-.-) is 

also included for comparison. 
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The last four dose distributions hold only for r > 
a, inside a the dose distribution will be practically 
uniform and close to Do in the first approximation 
as seen by the solid, dashed, dotted, and dash-dot- 
ted curves, respcciively in Fig. 1. In order to achieve 
an exactly uniform dose inside a, with external 
beams the incident beam should ideally be cosine 
distributed in the plane of rotation according to 
do) = cos pg, where y is the lateral coordinate in 
the beam [6]. For internal emitters, the optimum 
nuclide density distribution may be accurately cal- 
culated using Eqns. (12) or (13) below (cf. also Dav- 
ison [ 111). 

These four distinct cases, illustrated in the upper 
half of Fig. 1 show an increasing reduction of the 
relative dose level outside the target as the beam is 
distributed over a larger and larger fraction of the 
spatial angle. The distance from the beam edge to 
the 50% isodose level is 41.4 and 15.5% respectively 
of the field half width a for the cylindrical and 
spherical irradiation respectively. The dose distri- 
bution with internal y-emitters is quite close to the 
spherical case due to the small pP value used for all 
beams (10 MV). With appropriate internal P-emit- 
ters an even better confinement of the irradiated 
volume is of course possible. 

When more accurate results are desirable includ- 
ing effects of phantom scatter and the transport of 
secondary charged particles, the elementary con- 
vergent point irradiation distributions should be 
measured or calculated using, for example, the 
Monte Carlo-method. It will be even more accurate 
to use the basic point spread functions h(t) already 
calculated for dose planning purposes [l] and using 
convolution techniques to determine the appropri- 
ate elementary distributions to reduce the Monte 
Carlo-noise. The point-spread function h(t) is de- 
fined as the ratio of the mean energy imparted per 
unit volume at a point i by the photon energy in- 
teracting at the origin (i z 0). Thus the photon 
pencil beam dose distribution p(F) is obtained from 
the integral: 

where ji is the mean attenuation coefficient and h(t) 
is the corresponding point spread function of the 
incident photon beam and Z is the depth coordinate 
along the beam. Pencil beam dose distributions 
have previously been used for dose planning pur- 
poses by some workers [17,21]. From the pencil 
beam distribution, the cylindrical convergent point 
irradiation distribution can be expressed as closed 
line integrals over the pencil beam distribution 
along circles centered on the pencil beam at the 
point of convergence [6]: 

W = P p(F) dl/2rrr. 

r 

Similarly, the dose distribution for a spherically ir- 
radiated point is obtained from closed surface in- 
tegrals over spheres centered on the pencil beam at 
the point of convergence: 

d,(r) = p(t) d/I/4&. (8) 
r 

Through the integrations above the possible Monte 
Carlo-noise in the point spread function h(t) will be 
reduced by one to two orders of magnitude and the 
resultant distributions Eqns. (7) and (8) are well 
behaved accurately known smooth functions [6]. 

Extended convex targets without specific organs at 
risk 

The above given basic functions describing the con- 
verging isotropic, cylindrical [Eqn. (7)] and spheri- 
cal [Eqn. (S)] point irradiations are the best possible 
absorbed dose distributions depending on if a two 
dimensional or a true three dimensional irradiation 
technique respectively is desired. Of course, they 
only pertain to the eradication of small point-like 
target volumes when there are no specific extra sen- 
sitive organ at risk in the vicinity. This is obvious 
as by distributing the incident beams equally over 
all angles the maximum absorbed dose at a given 
distance from the target is minimized. Due to the 
linearity between absorbed dose and the contrib- 
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Fig. 2. One dimensional example of the interrelation between 
the point irradiation density, cp, the cross-sectional shape of an 
cylindrical isotropic convergent point irradiation dose distribu- 
tion for 10 MeV photons, d, [Eqn. (7)], and the desired dose 
distribution D. ---- is obtained by adding IO-point irradiation 
dose distributions (dc) of an amplitude defined by 
irradiation density curve (rp). It is seen that a very good realiz- 
ation of the desired dose distribution is achieved, in this case by 

using an iterative algorithm [15]. 

uting energy depositions the superposition principle 
implies that the optima1 dose distribution In an ex- 
tended volume may be subdivided in the basic op- 
timal distributions for each constituent point-like 
target. The resultant dose distribution is optimal in 
the meaning that for a given desired dose distribu- 
tion in the target volume the maximum absorbed 
dose at a given distance from the tumor is as small 
as possible. 

Furthermore, as the above convergent point ir- 
radiation distributions are primarily determined by 
the convergent beam geometry and not by photon 
absorption [see e.g. Eqns. (2-S)] they are very weak- 
ly depending on the detailed cross-section and in- 
ternal structures of the patient or the phantom and 
may therefore in the first approximation be regard- 
ed as spatially invariant. This fact has been well 
known in conventional arc therapy with imite 
beams [12,19,22]. To further minimize the effects of 
this approximation a correction will be introduced 
in the final reverse back projection [Eqn. (15)] to 
reduce the errors to second order. 

The invariance of d(t) opens up interesting 
methods for determining the best possible irradia- 

(9) 
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tion technique in order to obtain a esired dose dis- 
tribution II(?) in the tumor. One may ask: How 
should the density q(I’) of convergent point irradia- 
tions, each generating a dose distribution d(r‘), be 
chosen to generate the desired target dose distri- 
bution D(F)? If cp was known D could be calculated 
simply by folding rp by g according to: 

where tC is the center coordinate of each point ir- 
radiation and d could be taken either from Eqns. 
(3) or (4) using a small value of (I, or preferably 
from Eqns. (7) and (8) which are more accurate. 
The former equation in each case should be used in 
the two dimensional case with isotropic cylindrical 
irradiations and the latter when a true three dimen- 
sional irradiation technique is emploied. Thus, 50 is 
given implicitly by an integral equation containing 
D and r. This equation is illustrated in Fig. 2 for a 
uniform one dimensional target by discretization of 
the integral into a sum of 10 terms. Because din the 
first approximation is spatially invariant and as 
there are no extra sensitive organs at risk in the 
neighborhood of the target volume V,, the above 
folding operation may be transformed to a product 
by Fourier transform of Eqn. (9) according to: 

D(Z) = @(S) - J(J) (10) 

where fi, + and Jare the Fourier transforms of the 
corresponding spatial distributions D, cp and d re- 
spectively and S is the corresponding spatial fre- 
quency according to: 

+a, 

I@) = F {D(F)) = 
SSI 

D(F) e-h'c; d3,.. (11) 

-co 

From Eqn. (lo), it is seen that the density S, in 
Fourier space is given by the ratio of fi and d so 
after an inverse transform cp can be obtained from 
the expression: 



Fig. 3. Schematic illustration of the decomposition of a desired 
dose distribution D(?) in a density distribution cp(?) of conver- 
gent point irradiation distributions d(i). The optimal incident 
beam during moving beam therapy D(&I,~) is obtained by in- 
verse back-projection of the point irradiation density d(tS - ?) . 

q(i) into the effective radiation source. 

For numerical calculations, Eqn. (12) may not be 
ideally suited as the zeros of d will generate very 
intense high frequency components that results in 
considerable oscillations in @ [14]. These oscilla- 
tions may be removed or significantly reduced by 
introducing a low pass filter function Z(Q) in 
Fourier space according to: 

A useful form of the filter function Z is: 

Z(s,A) = 
1 

1 + n]J(;))l-2 

(13) 

(14) 

as discussed in more detail by Davies [ 1 I] and Lind 
and Brahme [14]. An alternative approach is to 
solve Eqn. (9) by iterative procedures as discussed 
in connection with Eqn. (16) below and by Lind 
and Brahme [15]. 

When a practical solution qn has been found by 
either of these methods, the next step will be to find 

a suitable realization of this density distribution of 
basic point irradiations. A natural approach would 
be to decompose the point irradiation distributions 
in their constituent pencil beams (Fig. 3) and make 
“inverse back projections” or simply projections ,!f 
d - t-p1 on the effective radiation source at ?S, taking 
into account the true patient geometry and the in- 
tegrated point irradiation density along the direc- 
tion of each line integral, 1 according to: 

D(&q,O) = 
s 

d(FS - ?) cpA(?) eVi) dz (15) 
1 

where o({,q,O) is the resultant transversal dose dis- 
tribution of the incident beam, z(F) is the depth of 
a point r’ in the target volume in the direction of 
projection of the line integral and 5 and q are the 
transverse co-ordinates of the incident beam per- 
pendicular and parallel, respectively to the rotation 
axis (Fig. 3). As seen from the figure and Eqn. (15), 
the incident dose distribution will have a high value 
where the beam passes a long distance through the 
target volume or where rp has a high value. This is 
the case near the central axis in the direction 0 cho- 
sen to illustrate the line integral in Fig. 3. When the 
beam is incident from above the reverse is true as 
seen from the shape of the target volume and the 
irradiation density (Figs. 3 and 4). The execution 
of the presently suggested irradiation technique 
therefore has many resemblances to the back-pro- 
jections used in computed tomography [6] as seen 
in Fig. 4 where the incident beams from the upper 
hemisphere are shown schematically at 45” inter- 
vals. The resultant isodose distribution is shown in 
Fig. 5. Due to the finite voxel size used in the cal- 
culation, the desired dose distribution is defined by 
the jagged line. An almost perfect agreement is seen 
inside the target volume at the same time as the 
absorbed dose outside the target is rapidly brought 
to low values. 

The correction for beam absorption in Eqn. (15) 
during back-projection is expressed by the term 
e%*. This term ensures that the back-projected 
beams when used for treatment will generate point 



Fig. 4. Schematic illustration of the type of dose delivery that 
will give the desired dose distribution in the target volume (shad- 
ed) and at the same time minimal dose to surrounding normal 
tissues. The angular dependent dose distributions are most ef- 
fectively generated using scanned photon beams [5,14.15,18]. 
For simplicity, the corresponding dose distributions from below 
are left out in the figure. The location of isocenter (star) is rather 

uncritical for the present irradiation technique. 

irradiation distributions which are practically equal 
to the initially assumed point irradiation distribu- 
tions at least inside a radius equal to the shortest 
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distance from tht point in question to the nearest 
significant inhomogeneity in the patient. or a 
strongly heterogeneous patient, the simple expo- 
nential factor should be replaced by a raytrace 
through the intervening tissues. In practise, this 
procedure therefore considerably relaxes the need 
for the isotropic point irradiation distribution to be 
spatially invariant as assumed above in Eqn. (9). 

When cp(?) is a slowly varying function over the 
target volume or more exactly when D(~,Q) is 
rather independent of 0, the optimal irradiation in 
the above meaning is of the conventional confor- 
mation type (see Figs. 4 and 7). When this is no 
longer the case, a more advanced type of dynamic 
treatment is most advantageous with varying trans- 
verse dose profile as a function of the angle of ro- 
tation. Such treatments are more difficult but can 
often be realized with treatment units using a mul- 
tileaf collimator where each pair of opposed colli- 
mator leaves have to perform a complex motion [2] 
at every orientation of the gantry. Another possi- 
bility would be to use a set of fixed compensators 

Fig. 5. The resultant dose distribution in the patient when using the target volume of Figs. 3 and 4 and the incident beams according 

to Fig. 4. It is seen that the isodoses very accurately follow the shape of the target volume which is defined by the 95% isodose. 
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and only irradiate from a small number of direc- 
tions. A more general and flexible technique would 
be to use a beam flattening system based on scanned 
photon or electron beams [4,&l 5,181 where the 
transversal dose distribution of the incident beam 
can be continuously varied during the rotation of 
the gantry as shown in Fig. 4. 

Convex-concave target volumes with organs at risk 

When the cross-section of the target volume in the 
plane of rotation deviates more and more from the 
simple convex shape [3], and in particular when 
there is an organ at risk in its vicinity (Fig. 6), the 
simple conformation type of treatment is no longer 
the best solution. This is because a conformation 
dose distribution will always be convex (see Fig. 7) 
and therefore the normal tissues outside the con- 
cave sections, where an organ at risk may be locat- 
ed, will receive unnecessarily high doses. 

However, a generalization of the conformation 
technique may be possible. Instead of the tradi- 
tional conformation approach, where each point in 
a convex target is irradiated from all directions, the 
angular interval under which each point is being 
irradiated is decreased by an angle* or, in the three 
dimensional case by, a double cone, 6 (Fig. 6). This 
angle should preferably vary from point to point in 
the target volume but the average angular extention 
of the organ at risk as seen from all points in the 
target volume might be a sufficient compromise in 
many cases. This will reduce the dose at all points 
by the same amount and generate a depression in 
the azimutal distribution which could be oriented 
to minimize the dose to the organ at risk (shaded 
in Fig. 6). A more accurate and genera1 approach 
which is applicable also with several organs at risk 
would be to reduce or switch off the irradiation of 
each point in the target volume over those angular 
intervals that may contain organs at risk. In both 
these cases, the value of the azimutally limited con- 

* A different but related investigation of the above problems 
with partly similar results has recently been made by Cormack 
R- 

Fig. 6. When there is a very sensitive organ in the vicinity of the 
target volume, the best dose distribution is achieved by reducing 
the angle of irradiation at each point in the target by approxi- 
mately an angle 6 corresponding to the extension of the organ 

at risk (shaded). 

vergent point irradiation distributions da(P,?C) will 
depend both on the actual location of their center 
‘co-ordinates FC and the location of the point of in- 
terest r’. 

Quantitatively this type of irradiation could be 
formulated in analogy with Eqn. (9): 

(16) 

where d, now is the azimutally limited point irra- 
diation distribution the value of which now will de- 
pend both on the location of its center point tC and 
the field point of interest ?, not just their separation 
(? - FC). Unfortunately, this equation is therefore 
no longer a straight forward convolution but a 
more general so called Fredholm integral equation 
of the first kind. This equation is generally more 
difficult to solve even by numerically methods 
though a number of procedures are known 
[15,16,20]. Of special interest for computer appli- 
cations are the iterative algorithms which avoid 
some of the problems with the Fourier transform 
technique discussed above, even though they may 
not be as fast as the latter. Among the special ad- 
vantages of the iterative procedures are that they 
can be constrained, for example, in order to always 
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generate non-negative dose distributions which is 
a trivial but necessary condition on the distribution. 
Practical applications of these equations will be pre- 
sented in more details in proceeding publications. 

Assuming now that an azimutally limited point 
irradiation density (o, has been found which satis- 
fies Eqn. (16). The optimal shape of the angular- 
dependent incident dose distribution that generates 
this density may again be determined by projection 
of da - qa on each position of the effective radiation 
source FS: 

ma@ = d,(~&) q,(i’,) e’V(‘c) dz (17) 
1 

where most of the notations are the same as in Eqn. 
(15). The main difference is that da will now switch 
the incident beam on or off depending on whether 
it will pass through an organ at risk. 

The general technique described in the previous 
section for convex targets may in a modified form 
also be applicable to the present geometry provided 
the organ at risk is included in the target volume as 
a low or eve11 a negative dose volume. It is impor- 
tant, however, that the negative dose specified in 
the risk organ is not too low such that the incident 
beam when determined from Eqn. (17) becomes 
negative. For the case of complete cylindrical sym- 
metry, this problem has already been solved in a 
very general way [6,9]. 

A third alternative would be to analyze the de- 
sired dose distribution in terms of the even more 
elementary pencil beams [see Eqn. (6)]. However, 
this will increase the complexity of the equations 
due to the larger number of degrees of freedom. 
The advantage gained is that the most accurate op- 
timization is obtained by this approach. 

Discretization to a finite mm er of sta~o~~ry beams 

Today, when nearly all conventional radiation ther- 
apy treatment AF‘aits are without scanning beam 
capabilities, it would be desirable to reduce the 

number of incident beams to a small number so 
ordinary beam compensators can be used. 

A crude solution to this problem is to use just the 
inverse back-projections of n - q on the desired di- 
rections. However, a more precise solution to this 
problem may be obtained by replacing the isotropic 
point irradiation density in Eqns. (9) and (16) with 
a point irradiation dose distribution d, which only 
includes two, three or n pencil beams p(F) which 
intercept at a common point. The directions and 
weights of the individual pencil beams can then be 
chosen to avoid irradiation of given organs at risk. 
By chasing this type of elementary point irradiation 
distribution the inverse back-projection will only 
require dose delivery from two, three or rz different 
beam portals. This will greatly facilitate the use of 
ordinary’ beam compensators particularly when n 
is a small number as schematically illustrated in the 
lower line of Fig. 7. 

In general, a larger number of incident beam di- 
rections are required when the desired dose distri- 
bution is more complicated for example as shown 
in Fig. 4. When the desired dose variations across 
the target volume are not too large, a rather small 
value for n should be acceptable. In general, it 
should be desirable to have the beams oriented such 
that a minimum of parallel opposed beams are ob- 
tained, for example, three beams at 120” intervals. 
The reason for this choice is that the resultant point 
irradiation distribution d3 will be rather close to the 
optimal isotropic point irradiation distribution. In 
this way, the individual pencil beam exits partly fill 
the depressions between the opposed incident 
beams such that close to the convergence point the 
dose distribution is similar to that with six evenly 
spaced beams. 

This result is quite interesting as it indicates that 
parallel opposed beam techniques should not be as 
advantageous as there frequent use may indicate. 
The principal reason for their popularity is of 
course that compensators are generally not re- 
quired. In general, it should be more advantageous 
to use two oblique fields with wedge filters, for ex- 
ample, at 90” from each other or three fields as in 
Fig. 7 when more flexibility is required for shaping 
of the dose distribution inside the target volume. 
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Fig. 7. Schematic comparison of different external beam irradiation techniques. It is seen that non-uniform dose delivery will in general 
allow a better matching of the treatment volume (----) to the target volume (shaded). 

Discussion 

As seen from Fig. 4, the presently derived optimal 
irradiation techniques have many similarities with 
the back-projections used in computed tomography 
(CT). The main difference is that the negative val- 
ued filters used in CT reconstruction cannot be used 
in radiation therapy as the incident dose distribu- 
tions by necessity are non-negative. The practical 
consequence of this fact is that arbitary dose dis- 
tributions can not be delivered [6] whereas arbitary 
attenuation patterns can be determined using CT. 
For example, it is not possible to give a high dose 
to a volume in the patient and zero dose everywhere 
else. 

In order to take this restriction into account, the 
desired dose distribution inside the target volume 

has here been analyzed in terms of the well known 
optimum dose distribution for the irradiation of a 
single point. The resultant point irradiation densi- 
ties will therefore always be realizable and practic- 
able and deliver minimum dose to surrounding nor- 
mal tissues. The resulting irradiation technique gen- 
erally will require a high dose to be delivered from 
directions where the incident beam passes a long 
distance through the target volume. In fact, with 
high energy beams or more specifically when the 
influence of beam attenuation and scatter is negli- 
gible, the optimal incident beam approaches a true 
geometric projection of the shape of the target vol- 
ume. It is obvious that this will minimize the dose 
to surrounding normal tissues as the beams are used 
more effectively and there are generally less room 
for superficial normal tissues along the most heavily 



weighted beam directions. When low megavoltage 
beams are used and the target volume has both nar- 
row and broad sections, the point irradiation den- 
sity will deviate substantially from the desired, 
often generally, uniform dose distribution as sche- 
matically illustrated in Fig. 4. The considerable in- 

fluence of photon attenuation and scatter in this 
case will make the optimal incident beams deviate 
substantially from a pure geometrical projection of 
the target volume. 

In order to illustrate the main properties of dif- 
ferent external beam irradiation techniques with 
uniform and non-uniform incident beams, the tar- 
get volumes (shaded areas) and treatment volumes 
(dashed lines) for a cervix tumor and associated 
lymph nodes are schematically illustrated in Fig. 7. 
It is clear from the figure that with strongly concave 
target volumes none of the uniform beam irradia- 
tion techniques can produce a concave treatment 
volume except to some extent for the fairly complex 
multicenter arc treatments. With non-uniform in- 
cident beams, the flexibility is much greater and 
even a two or three field technique will do the job 
as shown in the lower row. 

Of special interest for the development of future 
dose planning techniques is that the best irradiation 
technique generally can be derived by deterministic 
methods using Fourier transform techniques or the 
solution of a Fredholm equation of the first kind. 
These methods may thus, in the near future, reduce 
the need for the time consuming trial and error ap- 
proach often applied in dose planning of today. It 
will therefore be essential to develop computer al- 
gorithms for solving equations of the above type 
[e.g. Eqns. (9), (13), (16)] and develop suitable filter 
functions. Naturally the resultant dose profiles 
D(&q,O) will generally vary both laterally and with 
angle. Such developments will increase the need for 
computer controlled multileaf collimators prefer- 
ably using scanned photon or electron beams to 
accomplish maximum flexibility in the shaping of 
the beam in each direction of the gantry [5,14,18]. 
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