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Abstract. An integral  equation  relating  the  lateral  absorbed  dose  profile of a  photon 
beam  to  the  resultant  absorbed  dose  distribution  during  single-turn  rotating-beam  therapy 
has  been  set  up  and  solved  for  the  case of a  cylindrical phantom with the axis of rotation 
coinciding  with  the  axis of symmetry of the  cylinder.  In  the first approximation  the  results 
obtained  are  also  valid  when  the  axis of rotation is somewhat  off-centred,  even in a 
phantom  that  deviates  from  circular  symmetry,  provided  the  rotation is performed in both 
clockwise  and  counter  clockwise  directions.  The  calculated  dose  profiles  indicate  that 
improved  dose  uniformity  can  be  achieved  using  a  new  type of non-linear  wedge-shaped 
filter,  which  can  easily  be  designed  using the  derived  general  analytic  solution  to  the 
integral  equation. 

1. Introduction 

In  radiation  therapy of well defined deep  seated  tumour volumes  rotation  therapy is 
often  a  treatment  method of interest  when  very high absorbed  doses  are  needed 
relative  to  the  tolerance level of the  surrounding  healthy tissues (Johns  1958, Kliger- 
man et a1 1958,  Wichmann  and  Heinze  1959,  Takahashi  1965).  This is the case in 
the  treatment of small localised brain  tumours,  when  the  absorbed  dose  to  the  rest 
of the  brain  should  be  kept low. Other  target volumes,  where  this  type of irradiation 
could  be of interest,  are  the cervix and  the  bladder with the colon  as  possible  organ 
at risk.  The reverse  problem is also of interest,  namely  when  the  organ  at risk is 
surrounded by the  target volume.  This is the case with the  medulla when  irradiating 
the  surrounding  lymphnodes in the  head  and neck  region (cf., Trump et a1 1961, 
Proimos  1965,  Lax  and  Brahme  1982). 

For all these cases the  question may  be asked: Which is the  desired  lateral  dose 
profile in the incident  beam that  produces  a  desired  radial  absorbed  dose  distribution 
in the  body  after  one  complete  rotation? In  most  cases  a  uniform absorbed dose to 
the  target  volume will be  preferred with minimal absorbed  dose  everywhere else,  but 
other  radial  dose profiles may  also be of interest  (Proimos  1979).  We will give an 
exact  answer  to  this  question with the  assumption of exponential  photon  absorption. 

In order  to simplify the  mathematical  treatment  the  body cross-section will be 
assumed to be  circularly  cylindrical with the axis of rotation coinciding with the cylinder 
axis. This is obviously  a  simplification  as the body  cross-section is rarely  circular nor 
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is the  target  volume placed  symmetrically in the  body.  However,  as  parallel  opposed 
photon  beams generally generate a very uniform  dose  distribution  over the body 
cross-section  this simplification is justified, at  least as  a first approximation,  when  two 
rotations are  performed,  one in the clockwise and  the  other in the  counter clockwise 
direction. 

2. Mathematical formulation 

The depth-dose  distribution in a photon  beam  can, with great accuracy, be approxi- 
mated by a  simple  exponential  expression  characterised by the practical attenuation 
coefficient, pp (cf., Brahme  and Svensson 1979; for simplicity we disregard  the  dose 
build-up  near  the  surface in the  present  treatment). Based on this  approximation  and 
the  assumption of a cylindrical body  cross-section with the axis of rotation  coinciding 
with the cylinder axis the  dose  distribution in the cylinder  could be  written: 

d(x, z )  = d(x)  exp(-ppz) (1) 
where d(x)  is the  dose variation  along the positive x-axis ( d ( x )  = 0 for x S 0) and z 
is the  distance  from  the x-axis in the  direction of the  beam  (see figure 1). 

4x 

Figure 1. The irradiation  geometry  and  coordinate system used in the calculations. The origin of the 
rectangular and polar  coordinate systems .is located at the  isocentre of the  therapy  machine. The location 
of the  beam block and  the  non-linear  wedge-shaped filter is also indicated. 

When  the  beam is now rotated  one  complete  turn, all points  at a  radial  distance 
r in the cylinder, will receive an  absorbed  dose  contribution  equal  to  the  line  integral 
over  the  absorbed  dose  distribution  along a circle of radius r in the cylinder  when 
irradiated by the  stationary  beam profile d ( x )  (assuming the  absorbed  dose  per  degree 
of rotation to  be  constant).  The radial  dose  variation  after one full  turn  thus  becomes: 

By using the  polar  coordinate  transforms, z and cp can be replaced by r and x since 
r2 = x' + z 2  and x = r  cos cp. The resulting  integral  over  x  becomes: 
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The  lateral dose distribution in the incident beam d ( x )  should thus satisfy the above 
integral equation, where D ( r )  is the desired dose distribution using rotation  therapy. 
Of special interest for radiation therapy is, of course, the case where D ( r )  has a 
constant value independent of r in some radial interval giving a uniform absorbed 
dose to  the  tumour volume. 

3. General  solution of the  integral  equation 

We will first derive the general solution for the case, where d ( x )  is zero inside a 
circular region of radius ro. The integral equation is then: 

Here 0 C ro L r L CO and pp > 0 is a ‘small’ constant, D ( r )  is a given function, which  is 
zero  for O s r   < r o ,  and d ( x )  is the function that we  wish to  determine in terms of 
D(r) .  For simplicity, we suppose that r can take any value up to CO, although it is 
possible, and more reasonable, to restrict oneself to a finite interval. 

3.1. Heuristic  reasoning 

If (U, is  very small, corresponding to very  high photon energies, the integral equation 
may  be approximated by: 

and if r is  close to ro, this equation may be approximated further by: 

which  is the well-known integral equation of Abel (1823) .  Equation ( 6 )  is known to 
have the solution (under reasonable regularity conditions on D ( r ) ) :  

In particular, if D ( r )  is constant = D  for r 5 ro, it  follows that 

D(ro /2 ) ’ / ’  
( x  - r0)’/’ 

d ( x )  = 

which has a  square  root singularity at roe 

3.2. Explicit  solution 

We  will  now treat  the general case  when pp # 0 and r is not necessarily close to ro. 
It is then reasonable to expect a similar, although slightly more complicated, solution 
to  the general equations ( 3 )  and (4). The  Abel integral equation (6)  is  usually  solved 
by noting that it  is a convolution equation  and by  using Laplace transforms. 
Equation (4) is not a convolution equation; it is, however, a so-called generalised 
Abel integral equation, to which  well known methods can be applied (cf., Handbuch 



1224 A Brahme et a1 

der Physik 1956). However, by a  simple  transformation of variables equation (4) can 
be  transformed  to  a convolution equation simply by replacing the old  variables (x, r )  
by a new set of variables (t, y )  given by the  formulae 

x =t+ro;  r = y + r o .  2 2 2 2 
(9) 

Equation (4) is transformed  into 

which is a  convolution equation  to which we will now apply the  Laplace  transform. 
Let us first rewrite  equation (10) as: 

rY 

where 

and 

f ( Y  - t )  = 
cosh [pp(y  - t)1'2] 

(y  - 
The  Laplace  transform H of a  function h defined on (0, a) is defined by (we  suppose 
that  the  integral converges at  least  for  some S)  

W 

H ( s )  = jo e"'h(y) dy (12) 

where S can take complex  values  (cf., Handbuch  der Physik 1956). 
Using  Laplace  transforms,  the  convolution  equation (1 1) is transformed  into 

G($)  = E ( s )  F ( $ )  

so that 

E ( $ )  = G ( s ) / F ( s ) .  (13) 

G(s) is the  Laplace  transform of the given function g(y) =D[(y + r : ) ' I 2 ]  and E ( s )  is 
the  Laplace  transform of the uniquely determined  function  that we are looking  for. 
The Laplace  transform F ( $ )  of f ( y )  can be obtained by direct  integration  according 
to  equation (12): 

W 

F ( S ) = / o  cosh Jy P P J Y  e-sY dY 

which, after  the variable  transform y = c2, becomes 
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Thus  equation (13) is reduced to 

E(s )  = dzexp(-p:/4s)G(s). T 

1225 

3.2.1. D is constant. We now wish to  determine e ( t )  and  start with the  particular case 
when D(r)  = constant = D. In this  case we have G(s) = D / s  so that 

1 
E(s )  = - exp(-p:/4s) D. JG 

The explicit function e ( t )  can now be  found by using the inverse  Laplace  transform. 
Using the  table  for inverse  Laplace  transforms in Erdtlyi (1954), we obtain 

D l  e ( t )  = - cos p p J t .  T A  
After  introduction  of  the old  variables x and r instead of t and y equation (17) takes 
the  form 

X 
d ( x )  = D * 2 1 /2  c o ~ [ ~ p ( ~ z - - o )  1 2 1/2 (18) 

( x 2 - r o )  

for x 3 ro and d ( x )  = 0 for x < ro. 

3.2.2. D is not a constant. We now  consider the  more  general case,  when D is not 
constant. We assume  for simplicity that D ( r )  is a  piecewise  continuously  differentiable 
function.  For technical  reasons, we rewrite  equation (15) as 

1 
E ( s )  == exp(-p;/4s) sG(s). 

JST 
Using well known properties of the  Laplace  transform, this  implies that  for  reasonable 
g : s  

i.e., if we go  back to  the original  variables 

which is the explicit formula,  from which we can  calculate d ( x ) ,  when D ( r )  is a given 
piecewise  continuously  differentiable function. 

3.3. Relation to computed  tomography 

It is very  interesting  to  note  that  the  present  problem is related  to  the  general  problem 
of CT scanners;  namely,  how to obtain  the two  dimensional  distribution of photon 
mass attenuation  properties in a  body  from a number of one dimensional  projections 
of the  photon  absorption in different  directions.  It  can  be  shown  that  this  problem 
also  leads to  an  integral  equation similar to  that of Abel (cf. Cormack 1980) and  thus 
also  similar to  equations (6) and (3) above. The  present  problem may be  regarded 
as the  reverse  problem  to  that of CT scanning  as  the  desired  dose  distribution is 
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Figure 2. The lateral  dose profile d ( x )  across the diameter of the cylinder when irradiated by the stationary 
beam is shown in the lower half of the figure for the case of a  central  target volume. The resulting radial 
dose  distribution in rotation  therapy D(r)  is shown in the  upper half of the figure. In figures 2 and 3 the 
solid curves include the effects of both primary and  scattered  photons  whereas  the  dashed curves include 
only the  primary  photons. The dose distributions are normalised to unity at  the maximum dose values. It 
is seen that  the ideal incident dose profile across the  rotation axis should decrease slowly with the radius. 

generally  known  and  the  incident  dose  distribution profiles are  required  instead. 
However,  there exists  a major difference  as the  incident  absorbed  dose profiles must 
be  larger  than,  or  equal to, zero,  whereas  the filter functions used in the  back-projection 
of photon  absorption profiles in CT scanning  also  take  negative  values.  This  sets  strong 
restrictions  on  the possibilities of generating  a  certain  type of dose  distribution in, for 
example,  rotation  therapy,  whereas, in principle,  any  photon attenuation  distribution 
can  be  reconstructed  from  measured  absorption  profiles. 

4. Implications for radiation therapy 

Two principally  different classes of applications of the  above  formula in radiation 
therapy can be distinguished. The first is with well defined  central  target  volume 
where  a  uniform  absorbed  dose is wanted with smallest  possible  dose to  surrounding 
healthy  tissues  (see  figure  2). For such  a  central cylindrical target  volume of radius 
r, the  desired  dose variation  becomes simply (equation (18) with ro = 0) 

and of course d ( x )  should  ideally be  zero  outside this  interval.  It is interesting  to 
observe  that  under  the  assumption of exponential  photon  absorption  the  lateral  dose 
variation  should  ideally  decrease slowly with the  distance  from  the  centre according 
to  equation (22). If the  photon  absorption in the semicylindrical  volume in front of 
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Figure 3. The lower and  upper curves respectively, show the  lateral  dose profile d ( x )  and the radial dose 
profile in rotation  therapy D(r )  for  the case of a  central  organ at risk. By using a cut-off at  the singularity, 
of about  three times the  plateau level, a fair uniformity over the  target volume and a very high dose 
gradient  near  the  organ at risk are obtained (symbols as in figure 2). 

the  diameter is taken  into  account  the  dose profile in the incident photon  beam, & ( x ) ,  
should  be 

d i , (x )  = D  cos(pplx))  exp , L L ~ [ ( R ’ - X ~ ) ~ ’ ~ - R ]  (23) 

which for  small x and pp behaves  like di , (x)  =D(1 - p p x 2 ( p p + i R ) ) .  The  resultant 
primary  dose  distribution in the cylinder  outside ro is obtained simply by inserting 
equation (22) in equation (3) (inside ro, D ( r )  = D ) .  When  the  dose  contribution  from 
scattered  photons is also to  be included d ( x )  can no  longer  be  set  to  zero  outside ro. 
The  scattered  dose  contribution  to d ( x )  has  been calculated  as  described by Nilsson 
and  Brahme  (1981).  The result is shown in figure 2. The solid  line  curves  include 
the effect of scattered  photons  whereas this is disregarded in the  dashed line  curves. 

The second  application of interest  for  the  present  theory is with a  cental  organ  at 
risk surrounded by the  target  volume  (see figure 3). Most  often one would wish D ( r )  
to  be  constant  outside  some  radius ro and  zero inside ro. The  resultant  dose  distribution 
along  the  radius of the cylinder is given exactly by equation (18). To  get a  uniform 
dose  distribution  outside ro the  absorbed  dose  should theoretically  incresse to infinity 
as r approaches ro. However, in practice  a finite value at least  a  few  times  larger  than 
the  peripheral  dose d ( R )  at  some large  radius R is sufficient, as  shown  experimentally 
by Lax  and  Brahme  (1982).  Mathematically this  can be  understood, as the inverse 
square  root singularity of equation (18) contains  a finite integral  dose.  Thus by limiting 
the  absorbed  dose  to  the  theoretical value at  some small  distance x - ro = S outside 
ro and  extending it the  same  distance S inside ro the  correct  integral  dose  contribution 
is obtained  due  to  the  properties of the  square  root singularity. Thus by making  a 
non-linear  wedge-shaped filter with a  transmission profile according to  the  function 
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d ( x )  in  figure 3 the  target  volume  can  be  irradiated uniformly  with  minimal dose  to 
the  organ  at risk on the  central axis (see  figure 1 and  Lax  and  Brahme (1982)). 

For  large  radii  and kp values  (e.g., r i  + 9.rr2/4pi > x 2 >  rg + .rr2/4ki) equation (18) 
results in negative  doses, which cannot  be realised  experimentally. In practice  this 
problem is avoided by choosing  a high photon  energy  and  consequently  a  small 
for  large  body  cross-sections. 

Because of the influence of scattered  photons it is physically impossible to  make 
d ( x )  = 0 inside ro especially  as the  dose level near ro is very  high. Therefore, in 
practice,  a  compromise  must be sought  between  the  height of the  peak  dose value 
and  the  allowable  scattered  dose level  inside ro. This  compromise is principally 
determined by the  ratio of the  tolerance level of the  organ  at risk relative  to  the 
desired  absorbed  dose in the  target  volume. If this ratio is very  small  a  fairly  large 
value of the  parameter S might be necessary. A typical  situation is shown by the solid 
curves in figure 3, where S is equal  to 0.1 mm and D(0)  is about 20% of the  dose in 
the  target  volume. 

In both  the  above cases,  instead of rotating  the  photon  beam  alternately in the 
clockwise and  counter-clockwise  directions it is advantageous  to  make  the  incident 
dose  distribution d ( x )  symmetric  across  the  rotation axis  such that d ( - x )  = d ( x ) .  This 
procedure is useful for perfectly  circular target volumes, but  should  not  be  used  for 
other  shapes  to allow an  accurate  tangential  adjustment of the  edge of the field to 
the  target  volume  (Lax  and  Brahme 1982). 
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Resume 

Solution  d’une Cquation integrale  rencontrie en therapie a champ  tournant. 

Nous avons  etabli  une Cquation intkgrale  reliant le profil lateral  de la dose  absorbie  d’un  faisceau  de 
photons a la distribution  resultante  de la dose  absorbte lors d’une  therapie B champ  tournant sur un seul 
tour. Nous avons  resolu  cette  equation  dans le cas d’un  fantbme  cylindrique  dont I’axe de  rotation coincide 
avec l’axe de symCtrie du  cylindre.  En  premiere  approximation, les resultats  obtenus  sont Cgalement 
valables quand  l’axe  de  rotation est quelque  peu dCcentr.6 et mBme pour un fantame  s’6cartant  de la 
symetrie  circulaire a condition  que la rotation  ait lieu dans les deux  sens (sens des aiguilles d’une  montrre 
et  sens  inverse).  Les profils de dose calcules indiquent  que I’on peut  obtenir  une  amelioration  de I’uniforrnite 
de la dose  en utilisant un nouveau  type  de filtre non  liniaire  en coin aisCment calculable  parti  de la 
solution  analytique  gtnerale  de  l’dquation  inttgrale. 

Zusammenfassung 

Losung  einer  Integralgleichung,  die in der  Rotationstherapie  verwendet  wird. 

Eine  Integralgleichung,  die  das  laterale  Energiedosisprofil  eines  Photonenstrahls rnit der  resultierenden 
Energiedosisverteilung  wahrend  einer  Rotationsbestrahlung  verbindet  wunde  aufgestellt  und  fur  den Fall 
eines  Zylinderphantoms,  dessen  Symmetrieachse rnit der  Rotationsachse  zusammenfallt,  gelost.  In  erster 
Naherung  sind  die  erhaltenen  Resultate  auch gultig, wenn  die  Rotationsachse  etwas  auflerhalb  des 
Zentrums liegt, sogar in einem  Phantom,  das von der  Kreissymmetrie  abweicht,  vorausgesetzt,  die  Rotation 
wird sowohl im Uhrzeigersinn wie auch gegen den  Uhrzeigersinn  durchgefuhrt.  Die  berechneten 
Dosisprofile zeigen, daf3 eine  verbesserte Dosisgleichformigkeit erreicht  werden  kann, wenn man  einen 
neuen  Typ  nicht-linearer  keilformiger  Filter  vewendet,  die mit Hilfe  der  abgeleiteten  allgemeinen  analytis- 
chen  Losung  der  Integralgleichung leicht konstruiert  weden  konnen. 
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